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A note on shock-shock diffraction 
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Whitham’s treatment of the ‘ shock-shock ’ diffraction of a shock wave advancing 
into a uniform, quiescent region is extended to a shock wave advancing into a 
region of uniform flow on the assumption that all velocities are approximately 
parallel. The result is applied to diffraction of a blast wave by a thin wedge 
travelling at supersonic speed. The prediction of the pressure on the wedge, just 
behind the diffracted blast wave, is qualitatively satisfactory. 

1. Introduction 
Whitham (1957) has treated the diffraction of a shock wave advancing into a 

uniform, quiescent region by an adaptation of Chisnell’s (1957) treatment of 
shock propagation in a converging channel. We consider here an extension of 
Whitham’s treatment of ‘shock-shock ’ diffraction to the diffraction of a shock 
wave moving into a region of uniform flow. This uniform flow contributes a 
velocity component that is tangential to, and conserved across, the diffracted 
shock, in consequence of which the shock normals (or ‘rays’) no longer can be 
regarded as channel walls (as they were in Whitham’s original formulation). 
Chisnell(1965) has recently shown how Whitham’s formulation may be modified 
to accomodate this tangential velocity, and we shall base our formulation on this 
modification.-f (Chester 1960 has considered shock propagation through a con- 
verging channel into a region of uniform flow; however, no tangential velocity 
component arises in this problem.) 

We shall apply our result to the diffraction of a blast wave (i.e. a strong shock 
wave) by a thin wedge travelling a t  supersonic speed and compare the pressure 
on the wedge, just behind the blast wave, with that inferred from a complete 
solution of the boundary-value problem (Smyrl 1963). We shall designate these 
calculations as approximate and exact, respectively. The corresponding calcula- 
tions for a stationary wedge have been made by Whitham (1957) and Lighthill 
(1949). 

The results of our comparison are qualitatively satisfactory, but the quantita- 
tive error appreciably exceeds that in the corresponding comparison for the 
stationary wedge. This suggests that Chisnell’s generalization of Whitham’s 
rule ((2.3) below) may be less satisfactory for shock propagation into a region of 

t I am indebted to  Dr Chisnell for bringing this modification to my attention after 
reading an earlier version of the present paper that was based on Whitham’s original rule 
[ M  = 0 in (2.3) below]. Chisnell’s modification effected a substantial improvement in 
the comparison of figure 6 below. 
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uniform flow than for propagation into a quiescent region, although further 
investigation would be required to support any definitive conclusion. 

Both the approximate and exact treatments of the travelling wedge depend 
on whether the incident blast wave intersects the original bow wave of the wedge 
outside or inside of the sonic circle associated with the initial penetration of the 
blast wave (cf. figures 1 and 6 in Smyrl’s paper). We shall consider only the former 
possibility, in which case the first step in both treatments is to calculate the 
diffraction of the incident blast wave by a Mach wave (i.e. a weak shock wave). 
The results of this preliminary calculation are implicit in Smyrl’s analysis, at 
least for y = 7/5, but we shall consider it briefly (in 3 3 below) and obtain explicit 
results for the angle through which the blast wave is turned and for the Mach 
number of the diffracted blast wave. 

2. Extension of Whitham’s rule 
Assuming that all velocities are approximately parallel (so that we may 

neglect the squares of the angles of inclination), we consider an approximately 
uniform, plane shock wave that moves with relative velocity mza, into a uniform, 

FIGURE 1. Shock-shock interaction, with arrows indicating velocities of 
original and diffracted shocks relative to medium on right. 

plane flow of velocity Ma, and sonic speed a,. We require the change in M, say 
6m, associated with a small change 68 in the angle of inclination of the shock 
(68 > 0 implies that the shock is locally concave with respect to the uniform flow 
on the right, as shown in figure 1). 

We can deduce from purely kinematical considerations [cf. Whitham 1957, 
equation (IS)] that 

where SA denotes the incremental change in A ,  the distance between a pair of rays 
orthogonal to the shock (&A = A, -Ao and bm = Nl - Mo in figure 6 of Whitham’s 

68 = ( - 6A/A)* [6m/(M + m)]*, (2.1) 

paper) - 
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Invoking our hypothesis of approximately parallel flow and assuming a perfect 
gas, we can calculate the local particle velocity, pressure, sonic speed, and density 
behind the shock from the Rankine-Hugoniot equations 

( 2 . 2 a )  

(2 .2b)  

q = a2[M + 2 ( y  + 1)-1 (m - ,m-l)], 

p = p2[1+ Q(y+ l)-l(mZ- I)], 

a2 = a 3 - 2 y ~ z ~  - (y  - l)] [ (y  - 1) m2 + 2]/(y + 1)2 m2, (2 .2c )  

P = YPb2’ ( 2 . 2 4  

where y denotes the specific-heat ratio. Following Chisnell(1964), wenow suppose 
that the characteristic relation 

holds just behind the shock. Substituting (2.2) into (2 .3) ,  we obtain 

-_ &A A = 2 [(&+L(M)Jf &- 1) K(.m) ] &*, (2.4) 

where K(2n) = 2 [ 1 + 2 ( y c  l)-l(p-l-p)]-l(l+,m-Z+2p)-l, (2 .5)  

(2.6) p(m) = [ (y -  l ) m 2 + 2 ] q 2 y m 2 - ( y -  1)]-4, 

and L(wz) = (y  + 1) (S(1- M - ~ )  + [Sy - (y - 1) W Z - ~ ] *  [ ( y  - 1) + 2m-2]*)-1. (2.7) 

Setting M = 0 in (2.4) yields Chester’s original result, as utilized by Whitham. 
Chester’s function K ( M )  decreases monotonically from $ a t  m = 1 to 0-3941 at 
m = co (for y = 715). The function L(m) decreases from 1 at m = 1 through a very 
flat minimum of approximately 0.779 near m = 3 to 0.7848 at m = co (for y = 7/5); 
it  is within 2 % of 0.80 for m 2 1.5 or 0.7 % of 0.78 for ~.n 2 2. 

Substituting (2.4) into (2.1), we obtain 

which is the required extension of Whitham’s ‘shock-shock’ relation as SO -+ 0. 
We observe that (2.8) reduces to Whitham’s [1957, equation ( 2 2 ) ]  result if 
Mlm + 0. 

We could extend the foregoing results in various ways. Thus, we can generalize 
Whitham’s (1957) differential equation for shock wave propagation to 

and integrate (2.4) to obtain 
A = k ( P ) f ( m , M ) ,  (2.10a) 

(2.106) 

However, the application of these more general results would be severely limited 
by our assumption that all velocities are approximately parallel. 

Fluid Mech. 22 7 
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3. Blast-wave, Mach-wave interaction 
Referring to figure 2 ,  we now consider the two-dimensional diffraction of a 

blast wave (strong shock) by a Mach wave (weak shock) that emanates from the 
apex of a thin wedge of semi-apex angle a in an otherwise undisturbed flow of 
supersonic speed U. Choosing a reference frame in which the wedge is at rest, 
we suppose the blast wave to advance into the region of undisturbed flow, say 

FIGURE 2. Diffraction of blast wave (01) by Mach wave (02). 

region 0, with relative speed c and to be normally incident on the apex of the 
wedge at t = 0. We define those regions in which the fluid has been disturbed only 
by the blast wave or only by the Mach wave as regions 1 and 2,  respectively. 
Given U ,  a, c, and the state of the fluid in region 0, we seek the angle - 6 through 
which the incident blast wave is turned and the speed c’ with which the diffracted 
blast wave advances into region 2. 

Let 02, extended through P to 0, be the original, undisturbed Mach wave, 
where P is the shock intersection at time t and 0 the intersection at  t = 0, 02 be 
the undisturbed Mach wave at time t ,  01 be the incident blast wave, 13 be the 
diffracted Mach wave, and 24 be the diffracted blast wave. The changes across 
02 and 13 are O(a) and, by hypothesis, small, whereas the changes across 01 and 
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24 need not be small. Regions 3 and 4 must be separated by the contact dis- 
continuity 34. We approximate this contact discontinuity by CP in figure 3 by 
virtue of the fact that its velocity differs from the particle velocity in region 1, 
say U + ul, only by a term of O(a). 

We can determine the foregoing pattern completely by invoking the weak- 
shock equations across 02 and 13, the Rankine-Hugoniot equations across 01 
and 24, and the requirements of continuity of normal velocity and pressure 

992 

FIGERE 3. The ratio of the shock diffraction angle E to the Mach-wave 
deflexion angle oc for M = 2 and y = 715. 

across 34. We shall omit the details of the calculation, since the results are not 
new (cf. Smyrl1963), although they do not appear to have been given explicitly. 

&Z = c/ao and M = U/ao, (3 . la ,  b )  Letting 

we find that 

€/a = M{m(M + m) + 4m-3(1M + K r n )  [l + h(M2 - 1) + (N/m)]- l  

X [( 1 - K ) - l  (M $. m)' (m2 f 1) - ###2(#.22 - 1) ( M 2  - 1)]}-' 

X {M + @Z - $(y $- 1) M (  1 - K#>Z2) $- #aF2(&! f K m )  [1 f h(M2 - 1) + (~M/#z)]-~ 
x [$(y + 1) PH(2rn + M - M2m) - * (y  - 1) ( M  + WZ)2 (1 - K ) 4 ] } ,  ( 3 4  

where K = 2(y+1)-1(1-m-2) (3.3) 

(3.4) 

and h = (1 - K)% (m2 - 1) { (1 + yK,"z2)* [ (M + my 
- ( l - K )  (M2- 1) (.>22- l)]*-(l-K)4un(M+.m)}-? 

We observe that h may be complex, in which case (figure 6 of Smyrl's paper) the 
shock wave intersects the Mach wave within the sonic circle of figure 3; however, 
we shall not consider this case. We also obtain 

m' = c'/a2 = mz+ (M2- 11-4 

x {M[1-g(y-1)MuZ]a-(ill+UPz)€}+O(a2), (3.5) 

for the Mach number of the diffracted shock wave 34 relative to the fluid in 
region 2. 

7-2  



0.8 I I I I 

u 0.4 - - 
1 w 

/ 

I I I I 0 

4. Shock-wave, sonic-circle interaction 
The diffracted shock wave 02 actually remains straight only above the sonic 

circle of radius alt and centre C in figure 2. Below its intersection with this circle, 
it  is diffracted as a curved shock that must meet the wedge normally. We shall 
approximate this curved shock by the plane shock AB of figure 5. The pressure 
just behind it then is uniform and equal to that a t  the point A on the wedge. 
Invoking (2.2b), we obtain 

P A  =1)2[1+2y(y+ 1)-'("'''-1)], (4.1) 

where m" denotes the Mach number of AB. 

pa = po[ l  + (yM2/B) a], 

Invoking the weak-shock equations (i.e. linearized airfoil theory), we obtain 

B = (X2- I)*. (4.212, b)  

Substituting (4.2) into (4.1), remarking that P Z " - - ~  = O(a), and introducing 

p1 = po[1 + 3y(y + 1)-l(..2 - l)] (4.3) 

(4.4) 
where ~ ( P P Z ,  M )  = - y + (mW - mz)/a. (4.5) 

for comparison, we can transform (4.1) to 

PA = 2)1{l + + s(@z,z, M)l a f O(a2)}, 

We now calculate m" from (2.8) according to 

m" = m' + G(*n', M )  ( E  + a)  + O(a2) 

= m' + G(m, M )  ( E  + a) + O(a'), 

( 4 . 6 ~ )  

(4.6b) 

where mf is given by (3.5). Substituting the resulting expression for WZ"-.WZ. into 
( 4 4 ,  we obtain 

S(PZ, M) = 4 ~ ~ ( 2 y ~ ~ - y +  1)-'{[1+ (E/cx)]G(PR,M)* 
+ MB-l[I - $(y - 1) M;I .~]  - ( M  + W )  B-l (€/a)). (4.7) 
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FIGURE 5.  The assumed pattern for diffraction of a blast wave by a moving wedge. That 
portion of the pattern above B, comprising the incident blast wave 01, the Mach wave 02, 
and the upper portion of the diffracted blast wave, is as in figure 2.  

“ 0  2 4 6 8 10 

m 

FIGURE 6. The relative pressure on the wedge, just behind the 
diffracted blast wave, for M = 2 and y = 715. 
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We can compare the relative effects of the Mach wave and the sonic circle on 
the diffraction of the blast wave through the relative increments of either angle 
of inclination or Mach number. The blast wave is turned through angles of 
magnitude 6 and e + a: by the Mach wave and the sonic circle, respectively, and 
the ratio C / ( E  + a) varies between roughly 0.2 (’.z = 3)  and 0.5 (m= co) for M = 2. 
The corresponding ratio of incremental Mach numbers is 

4%’ - MZ MB-1[ 1 - &(y - 1) Mm] - ( M  + m) B-1 (€/a:) 
[ I +  (441  G(*% M )  

J (44 ___- - n I *wz -9% 

which varies between roughly - 0.2 (m = 1-5) and - 1.2 (mz = 03) for 31 = 2 and 

The quantity S + (M2/B),  designated asp’ by Smyrl, is compared with Smyrl’s 
result for M = 2 and y = 715 in figure 6. We conclude from this comparison that 
our approximation is qualitatively satisfactory. 

This work was done while the author was a consultant to the Aerodynamics 
and Propulsion Research Laboratory, Aerospace Corporation, El Segundo, 
California. 

y = 715. 
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